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Soft Kinetic Data Structures 

Artur Czumaj* and Christian Sohler t 

Abstract 
We introduce the framework of soft kinetic data structures (SKDS). 
A soft kinetic data structure is an approximate data structure that 
can be used to answer queries on a set of moving objects with 
unpredictable motion. We analyze the quality of a soft kinetic 
data structure by giving a competitive analysis with respect to the 
dynamics of the system. 

We illustrate our approach by presenting soft kinetic data 
structures for maintaining classical data structures: sorted arrays, 
balanced search trees, heaps, and range trees. We also describe 
soft kinetic data structures for maintaining the Euclidean minimum 
spanning trees. 

1 Introduction. 

The need of storing and processing continuously mov- 
ing data arises in a broad variety of applications, including 
weather forecast, geographic information systems, air-traffic 
control, and telecommunications applications. The classical 
dynamic data structures, which assume that the data changes 
only at some explicitly given time steps, are not suitable 
for processing continuously moving objects, because in or- 
der to be of some value they must be continuously updated. 
This is clearly an inefficient and infeasible solution consid- 
ering the prohibitively large update overhead. An alterna- 
tive approach, called kinetic data structures [6], has been re- 
cently proposed in the context of computational geometry 
(see also [21]). In kinetic data structures one assumes that 
the motions of the objects are parameterizable by (pseudo- 
)algebraic functions (typically linear, or low-degree polyno- 
mial) of time, so that the positions of the objects change 
without any explicit modification in the input data. (It is al- 
lowed however, that the motion function can be modified, in 
which case an "explicit" modification in the database is re- 
ported.) A typical example for a kinetic data structure is to 
maintain the closest pair of balls in a billiard simulation [5]. 
In such an application the closest pair of balls may change 
at certain discrete points of time which are called (external) 
events. Possible future events are stored in an event queue 
and a kinetic data structure always processes the next event 
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in the event queue. It may be necessary to have additional 
events that are needed to keep control of the system. These 
events are called internal. 

In recent years kinetic data structures have been applied 
to many problems (see, e.g., [2, 5, 6, 21]). The previous 
research has focused on the case when the objects motion 
is described by some "simple" functions which are known 
to the system. In many applications, however, the motion 
of the objects is either completely unpredictable in time or 
is unknown to the system (think, for example, on the car 
motion in a traffic control systems). In such a case one 
has to deal with the motion in the on-line fashion. Further, 
because of the massive input data, it is typically infeasible 
to process all data in the system (as it is, e.g., in real- 
time systems) and therefore the only possible solution is 
to provide approximate answers to the queries about the 
system. 

Of course, since we do not make any assumptions 
about the motion changes, it is possible that the changes 
in the system are so large that it is difficult to provide in a 
reasonable time even an approximate information about the 
system. Therefore we want to measure the quality of the 
algorithms depending on the dynamics of the system: if the 
system is very dynamic and very many changes has been 
performed, the solutions will be slower; but if there are very 
few modifications, then we aim at very quick solutions. To 
measure this quantity we shall use the competitive analysis 
of the algorithms: we shall measure how good the algorithms 
are if we compare them to the algorithms which work in best 
possible ways. 

Unlike classical data structures, soft kinetic data struc- 
tures provide only approximate answers with accuracy guar- 
antees. In systems with low dynamics this allows us, how- 
ever, order of magnitude faster responses over classical data 
structures. Additionally, by providing answers with accu- 
racy guarantees as fast as one wants them, one can continue 
computations within an allotted time frame for increasingly 
accurate answers. 

1.1 Definition of  Soft Kinetic Data Structures. In this 
section we describe the framework of soft kinetic data struc- 
tures. A soft kinetic data structure is an approximate data 
structure that answers queries on a set of objects that move 
in a totally unknown way. In our data structure each object 
is referenced by an object identifier. Using the object iden- 
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tifier we can query the current position of the corresponding 
object. Queries to our data structures are typically access 
or search queries. For example, when we use soft kinetic 
sorted arrays we may query for the ith largest object in the 
array, and a soft kinetic Euclidean minimum spanning tree 
(EMST) supports the usual graph operations on the EMST. 

Each time before a query to the data structure is pro- 
cessed we run a procedure called the data structure reor- 
ganizer. The data structure reorganizer checks whether the 
current status of the data structure is almost correct. If it is 
not, then the reorganizer will repair errors in the data struc- 
ture until it is almost correct. Clearly, the amount of work 
that has to be done by the reorganizer depends on the dy- 
namics of the system. To be able to analyze the quality of 
our data structures we compare the time we need to process 
a sequence of queries with the dynamics of the system. 

1.2 Capturing the Objects' Dynamics. In this section we 
explain how we measure the dynamics of the objects. We are 
given a system of moving objects. The dynamic behavior of 
the system can be described as an unknown function of time 
• that maps a point of time to a configuration of objects. 
Let (Q) = Q1 .... , Qk be a sequence of chronological 
queries to our data structure. We assume that a query Qt 
is answered at a certain point of  time which we denote by 
T(Qt) .  Our sequence of queries (Q} induces a sequence of 
configurations of objects (C) = C1 . . . . .  Ck, where Ct = 
O(T (Qt)) denotes the status of the system when query Qi is 
processed. One can think of a system as being static, if most 
pairs of consecutive configurations are "close" to each other 
and it is dynamic, if most pairs are "far" from each other. In 
the following we explain how we measure the dynamics in a 
formal way. We assume the objects are moving continuously 
from Ci to Ci+l using the "cheapest" possible motion. To 
be able to say whether a motion is "cheap" we define the 
cost of a motion in the spirit of kinetic data structures in the 
following way: 

DEFINITION 1.1. Let Ct and Ct+l be two configurations 
of objects and let D be a correct data structure for config- 
uration Ci. We assume that the objects are moving con- 
tinuously from configuration Ct to C~+~. At certain dis- 
crete points of time we have to change the data structure, 
because some invariant does not hold any longer. Then the 
cost c(Ci, C~+1 ) of a motion of objects from configuration 
Ci to C~+1 is the minimum number (over all continuous mo- 
tions) of these topological changes in D, if the objects are 
moving continuously from configuration Ci to Ct+l and D 
is always correct. 

Note that, although we assume for the analysis that 
objects are moving continuously, we do not necessarily have 
to deal with continuously changing data. 

The cost of a sequence of configurations is the cheapest 
motion from the first configuration to the second, from the 
second to the third and so on. Thus it is the sum of the 
cost of the cheapest motion between each pair of consecutive 
configurations. 

DEFINITION 1.2. The cost c((C}) of a sequence of config- 
urations (C) = C 1 , . . .  , Ck is ~ i  c(Ci, Ci+l ). 

Finally, the cost of a sequence of queries is the cost 
of the induced sequence of configurations. Note that, in 
some sense, the cost of  a sequence of queries is a lower 
bound on the work that has to be done to reorganize the data 
structure before each query. We will therefore compare the 
time needed to answer a sequence of queries with the cost of 
the sequence as it has just been defined. This will be done in 
form of a competitive ratio. 

1.3 Notion of Approximation. As already mentioned, it is 
impossible to use exact data structures in our model unless 
we always query the position of all objects before each 
query is processed. Similarly, it seems to be meaningless 
to use a classical notion of approximation when we consider 
problems like the Euclidean Minimum Spanning Tree. The 
reason is that in such problems already a very small change 
in the structure (e.g., inserting or deleting a single edge) 
can change the total cost very significantly, and therefore 
without looking at almost all edges we cannot guarantee any 
reasonable good approximation. We therefore consider a 
kind of combinatorial approximation as it was used before in 
the context of  property testing and spot checking (see, e.g., 
the survey work [19]). We define a function that measures 
the error of  a data structure and says that it the structure is 
almost correct (c-close) if the error of the structure is less 
than a given threshold. Both, the function and the threshold 
depend on a parameter e. Typically, the error function 
counts the edit-distance or Hamming distance to a correct 
data structure and the threshold is c ft. If  the error of the 
data structure is larger than the threshold, then we say it is 
c-far from correct. 

The goal of soft kinetic data  structures is to ensure 
w.h.p., that  each time before a query is processed the data 
structure is almost  correct. 

For a given sequence of queries (Q) = Q 1 , . . .  , Qk we 
will aim at the running time of soft kinetic data structure to 
be sublinear in k r t  and close to c{/Q)). In the theoretical 
model we are allowed to act each time, before a query is 
passed to the structure. 

DEFINITION 1.3. A soft kinetic data structure D is d- 
competitive, if for any sequence of queries (Q} = 
Q 1 , . . .  , Qk the expected time (the sum over the whole se- 
quence) needed to keep D close to correct is O(d .  (c((Q)) + 
k)). 
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1.4 A Generic Reorganizer. In this section we describe 
how we can guarantee that with high probability the data 
structure is almost correct when we process a query. First 
we need a procedure that tells us whether the data structure 
is almost correct or not. This procedure is called a spot 
checker or a property tester (see [10, 11, 12, 15, 20]). A spot 
checker samples a small set of objects from our data structure 
w.r.t, a (possibly non-uniform) probability distribution and 
checks whether the current values of these objects do not 
violate some invariant of the data structure. If  they do, we 
have found an error in the data structure which has to be 
fixed. The choice of the sample must be in such that, if the 
structure is e-far from correct, the data structure is rejected 

2 with probability at least ~. The following algorithm achieves 
with high probability that the structure is close to the correct 
one after the algorithm has finished its correction. Assume 
the structure is e-far from correct. Then the property tester 
rejects and finds an error in the structure with probability at 
least ~. Using standard amplification techniques we achieve 

a confidence probability of ~0" We prove below that the 
following algorithm guarantees w.h.p, that a data structure 
is e-close to correct after the algorithm was called: 

REORGANIZER(D) 
if is_not_correct(D) then 

Repair the error that has been found 
REORGANIZER(D) 
REORGANIZER(D) 

THEOREM 1.1. Algorithms REORGANIZER() guarantees 
with probability ~ that the data structure is e-close to cor- 

rect, i f  the property tester finds errors with probability ~o 
when the data structure is e-far from correct. 

Proof. Assume the data structure is e-far from correct. We 
want to analyze the probability that REORGANIZER() stops 
when the data structure is e-far from correct. This process 
can be viewed as a binary tree. Each node corresponds 
to a call of REORGANIZER() that rejects the current data 
structure and it has a left (right) child if the first (second) 
recursive call rejects the data structure. For example, if 
the first call to REORGANIZER() accepts the input, then the 
corresponding tree is the empty tree and it appears with 
probability ~ .  It is well known that the number of binary 
trees with k nodes is less than 4 k. Let T be a tree with k 
nodes. Then the probability that REORGANIZER() behaves 
like the tree is ( ~0 ) k. ( 1.26 ) k+ 1 because each binary tree with 
k nodes has k + 1 empty leafs. The overall probability that 
the process stops before the structure is e-close to correct is 
bounded from the above by ~ 0 < i.< oo 4i" ( ~0 )t ( 1.26 )t + 1 _< I" 

REMARK 1.1. Note that in a real time system the reorga- 
nizer may run as a background process. The approximation 

parameter e may be automatically adjusted to the dynamics 
of  the system and the available resources. 

1.5 An Example: Sorted Arrays.  As an illustrative ex- 
ample we consider soft kinetic sorted arrays. Let O be a set 
of rt moving objects in IlL The object identifiers of O are 
stored in an array A[1 .- .  r~]. When we consider continuous 
motion the topological structure of an exact array changes 
when the values vl ,v2 of two objects change from vl < vz 
to vl > v2. Under the assumption of continuous motion the 
two corresponding object identifiers must be adjacent in the 
array and will be swapped. Below we design a soft kinetic 
version of this structure. 

We have a sequence of queries Q = Q 1 , . . .  , Qk to our 
array and before proceeding each query we want to ensure 
that our array is nearly sorted. To check whether the array 
is close to a sorted array, we run the spot-checker from [10]. 
The array is rejected if it is e-far from sorted (the distance 
measure used is edit distance). If  the array is rejected the 
spot checker from [10] returns a pair of indices (k, t) with 
A[k] > A[t] and k < t. 

OBSERVATION l. 1. The cost o f  two consecutive queries 
Q1,Q2 to a soft kinetic sorted array is the number of  
swaps needed to transform a correctly sorted array A for 
configuration ~(T(Q1))  to a correctly sorted array for 
configuration ~(T(Q2)) .  This is equal to the number of  
inversion in the array A at time T(Q2). 

From the pair of indices (k, t) returned by the property 
tester we can compute a pair ( k ' , k '  + 1) with A[k'] > 
A[k '  + 1] by a binary search like procedure. As long as 
k ~ 1. + 1 we compute rrt = [ - - ~ ]  and proceed either 
with (k, rrt) or with (m, t) depending on the value of A[m]. 
Finally, we swap A[k'] and A[k'  + 1]. Below we state the 
algorithm for the soft kinetic sorted array that is called before 
a query is answered: 

SKARRAY(A) 
if SORTEDTESTO= FALSE then 

Let (k, t) be the pair returned by SORTEDTEST0 
k'=FINDINVERSION(k, t) 
swap(A[k'], A[k'  + 1]) 
SKArray(A) 
SKArray(A) 

THEOREM 1.2. There is a soft kinetic sorted array that is 
0 ( ~ )-competitive. 

Proof. We have to prove that the distance from a correct 
structure in the 'property testing distance' is monotone de- 
creasing and that the distance in terms of events is decreas- 
ing by 1 each time an error is fixed. 
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It is obvious that the edit distance to a correctly sorted array 
cannot increase when we correct an inversion. Thus we will 
now consider the distance in terms of  events and the running 
time. A single call to the reorganizer takes time O( ~ -~  • k) 
where k is the number of  corrected errors. Any error cor- 
rection reduces the distance to a correctly sorted array by 1. 
By the triangle inequality it follows that the overall time to 
process a sequence (Q) of  queries is at most c((Q))  • lo~a 

C " 

2 Basic Data Structures. 

In this section we present soft kinetic versions of  some 
classical data structures. 

2.1 Balanced Search Trees. We begin our discussion with 
soft kinetic search trees. 

A (balanced) binary search tree is a rooted tree in 
which each node z stores a key KEY(Z) (wlog. we assume 
this is a real number) and which satisfies the following 
property: For any node x in the tree and any node y 
in the left (right, respectively) subtree of  x, it holds that 
KEY(X) > KEY(1j)(KEY(x) < KEY(b), respectively)• 
In the case of  soft kinetic search trees each node z stores 
an object identifier which itself contains the key. This 
key may change in an unpredictable way as a function of  
time. We first suppose that only the standard access (or 
search/membership) operation is to be implemented• 

We observe that a binary search tree is correct, if the 
keys are in increasing order from the leftmost node to the 
rightmost one in the in-order tree traversal. Therefore our 
goal is similar to that in sorted arrays: we want to maintain 
a sorted sequence of  keys. We consider also the same events 
as in sorting, namely, an even occur when two keys change 
their relative order• We observe also that it does not seem to 
be a good idea to measure the quality of  the search tree by 
its edit distance to a correct search tree. This is because the 
most important tree operation is the access operation• There 
are search trees whose edit distance to a correct tree is very 
small but almost no access operation will work correctly. 
Consider for example a balanced search tree and exchange 
the root with the smallest element of  the tree. then roughly 
half of  the access operations will fail, but the edit distance to 
a correct tree is only constant. We therefore shall use another, 
more sensitive definition. 

DEFINITION 2.1. A search tree is e-far from correct, if at 
least e r t  access operations fail. 

The next thing we need is a property tester for the 
invariant of  the search tree. But this is simple for balanced 
search trees with the distance measure from above. We 
assume that the nodes of  the search tree are stored in an 
array and we may sample (in constant time) nodes from this 
array. The following is a spot checker for the above distance 
measure: sample a set o f  O ( 1 / e  ) nodes and check whether 

they are accessible by following pointers to their parent 
towards the root. At each node we verify the correctness 
of  the search path. Let ~T denote the linear order induced 
by the tree. If  the search path is incorrect, then we find two 
nodes vl ,v2 such that vl ~T v2 andvl  > v2. 

Then we proceed similar to the sorted arrays. We use 
a binary search on the tree nodes to find 2 adjacent nodes 
× ,y  w i t h x  ~ r  ~ a n d x  < ~j. In order to perform this 
operation in a binary tree efficiently we maintain the size 
of  each subtree. Then we swap x and y. Unfortunately, 
swapping two adjacent elements may increase the distance to 
a correct data structure in terms of  property testing. Thus the 
analysis of  the generic reorganizer does not hold any longer. 
Therefore, we use standard amplification techniques to put 
the confidence that the tester from above accepts an input that 
is far from correct to O( l / r t  2). A single call to the tester will 
then require O(log 2 r~/e) time. We need O(logr t )  time to 
perform the access operations and we have to repeat the test 
O(log rt) times to ensure the high confidence probability we 
need. The time for the binary search is O( log 2 r~). This leads 
to the following theorem. 

THEOREM 2.1. There is a soft kinetic balanced search tree 

that ts ~ t  e )-competltwe. 

Now we consider two dynamic operations on trees: 
insert and delete. We focus here on binary search trees 
whose updates are based on rotations (this includes, for 
example, AVL-trees). Thus in order to implement insert and 
delete operations we have to implement rotations. 

We call two elements x and y corrupted i f x  ~T Y and 
x > y,  or y ~T x and y > x. We prove that rotations do 
not increase the overall error, if the two top elements of  the 
rotation are not corrupted (the two top elements are x and y 
in Figure 1). 

LEMMA 2.1. Rotations do not change the number o f  errors 
in the structure unless the order o f  the two top elements is 
corrupted• 

Y x 

A B B C 

Figure 1: Illustration to the proof of  Lemma 2.1. 
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Proof We consider a rotation from the left tree to the right 
one (cf. Figure 1). The other rotation is similar. Let i be an 
item that can be accessed. If i. is in subtree A, then i. < × 
and i < y holds because i is accessible. Thus, it can also 
be accessed after the rotation. The same holds for items in 
subtree B. If an accessible item i is in subtree C we know 
that i > y. Since the two top elements (x and !J) are not 
corrupted, it holds that x < y; hence i < x < y and the item 
can be accessed after the rotation. 

Now let us consider the situation when the top elements 
are corrupted. We keep a reference to these two elements and 
continue with rotations. After we finished the insert~delete 
operation, we repair the corrupted elements in a similar way 
as we did above and then we call the reorganizer. We can 
amortize the time needed for this call to the reorganizer to the 
errors we just corrected. This leads to the following theorem: 

THEOREM 2.2. There is a soft kinetic search tree that is 
I o ~  . .  O( c )-compettttve and that supports insert and delete 

operations in O(logn) time. 

REMARK 2.1. Let us notice in this place that an inser- 
tion/deletion may increase the distance (in events) to a cor- 
rect structure by O{n). 

REMARK 2.2. Notice that the structure of  the search tree 
does not change during the reorganization process, i.e., a 
balanced search tree will remain balanced. 

2.2 Binary Heaps. Below we develop a soft kinetic binary 
heap. Let us recall that a binary heap is a data structure 
which stores r~ elements (wlog. we assume these elements 
have assigned real-valued keys) in an array and which sat- 
isfies the heap property: for every i, 1 < i < rt, it holds 
that KEY(Li/2]) < KEY(i). We shall also use an implicit 
tree representation of the heap and for each ith element in 
the array the element [i/2J will be called p arent[i].  

2.2.1 Property Tester. In this subsection we develop a 
property tester for binary heaps. When shall use the follow- 
ing distance measure (notice here a similarity of this defini- 
tion with the definition of soft heap due to Chazelle [7] - our 
notion is however significantly weaker): 

DEFINITION 2.2. A binary heap H is e-far from correct, if 
at least e n keys must be changed to satisfy the heap property 
in H. 

Our property tester works in the following way: We first 
sample at random a set S of elements in the heap. Then we 
look at the first log(] /e)  ancestors of each element chosen. 
By the heap property, so defined ISI chains must be non- 
increasing. If one of the chains is not non-increasing, we 
reject the input heap. 

TESTHEAP(H, e) 
Sample set S of O ( 1 / e) heap elements at random 
for each element i. 6 S do 

fori  = ] to O( log( l /e ) )  do 
if KEY(i) < KEY(parertt[i])then reject 
i = parertt[i] 

accept 

To prove the correctness of our algorithm, we will show 
that there are O(ert) distinct pairs of heap elements that 

• violate the heap property, 

• one element of the pair is ancestor of the other one, and 

• the distance between the two elements in the heap is at 
most O(log ~). 

We call such a pair a violating pair. For the analysis 
we introduce a new value btar tk  for the keys. If an element 
in the heap is assigned the value btar tk  it may be set to any 
value we like, thus for any key x btar tk  < × and btartk > x 
are both true. It follows immediately from the definition that 
if a heap is e-far from correct, we have to set at least err 
elements to the value btar tk  to fullfill the heap property. 

We say that a vertex is low in H, if its depth is at least 
log{ca) - 4. Let us now assume that heap H is c-far from 
correct. We show that there are O(erQ violating pairs. In 
a first step we set all err/16 keys of elements that are not 
low to btartk. If no pair (×,y) of elements remains s.t. × 
is ancestor of g and (×,y) violates the heap property, we 
are close to a correct heap which is a contradiction. Thus 
there exists such a pair. Also note that both × and g must 
be low in the heap. Thus the distance between them is at 
most O(log ¼) and we conclude that (×, y) is a violating pair. 
Then we set × and y to btar tk  and apply our argument again. 

15 O(crt) violating pairs. This way we can construct ert~-~ = 
when we sample the lower element of the violating pair, then 
our algorithm will find a conflict in the heap. Thus it is 
sufficient to sample O(¼) elements. We have just proven: 

THEOREM 2.3. Algorithm TESTHEAP0 is a proper~ tester 
for the heap property of binary heaps. Its running time is 
O ( 1 / e .  Iog(l/e)).  

2.2.2 Analyzing the Competitive Ratio. Unlike in the 
case of total orders there are many different partial orders 
that satisfy the heap property. This leads to the question 
how we compare our data structure to a correct sequence of 
data structures. One way to deal with this problem would 
be to require to make the heap competitive to any correct 
sequence of heaps. But this seems to much to ask for. We 
therefore only require that the amount of work we do must be 
comparable to the minimum number of events to transform 
the current heap into a correct one. 
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Similarly to the sorted array, we analyze the competi- 
tiveness of  binary heaps with respect to swaps of  two adja- 
cent elements. In this case we may swap an item ct with its 
parent in the heap. Unfortunately, in binary heaps it is not 
clear whether swapping two conflicting adjacent items does 
reduce the overall error of  the structure. 

We concentrate on reducing the error count only among 
the low vertices in the heap. If  we find a pair of  low vertices 
that violates the heap property we recompute the largest 
sub-heap that contains only low vertices and the conflicting 
pair. This sub-heap has size O ( I / e ) .  I f  we find another 
conflicting pair, we do nothing. This way we need O ( 1 / e )  
time to reduce the minimal distance to a correct heap by 1. 

THEOREM 2.4. There is a soft kinetic binary heap that is 
(_9 ( 1 / e .  log( 1 /e)  )-competitive. 

3 Geometric Data Structures. 

In the previous section we have focused our attention on 
standard elementary data structures. Now we shall consider 
some soft kinetic data structures from computational geom- 
etry. 

3.1 1D-Range Trees. We can use soft kinetic data struc- 
tures for binary search trees to obtain the following result 
(see [1] for a formal definition of  range trees): 

THEOREM 3.1. There is a soft kinetic version of lD-range 
trees such that range queries are supported in O(logr t  + k) 
time, where k is the number of  reported points. The 1D- 

range tree is ~ t  e }-competittve. Further, if k* denotes 
the number of  points in the query range then it holds whp. 
that k > k * - e r t .  

Proof. We have to show that k > k* - e r t  holds with 
probability 2 /3  and we have to prove the running time for 
the range queries. The other results follow from the binary 
search trees. First of  all, we can assume that the data 
structure is e-close to correct when the query is processed. 
This is because before the query the reorganizer is called. A 
range query for a one dimensional range tree is answered in 
the following standard way: we search for the right and the 
left end of  the query interval and output all nodes that are 
between the search paths. Before we report a point we check 
if it is really inside the query interval. If  it is, we output 
it. If  it is not we have found an inversion with some node 
on the search paths. We can correct this inversion and call 
the reorganizer. The time for this call as well as the time to 
process the point is amortized to the corrected error. 

Now assume that less than k* - e r t  points are reported. 
Then there are err nodes that cannot be accessed, because 
any access operation to one of  the missing nodes with end 
either on the search paths or between them. But these are the 

reported nodes. Thus we have that the tree is e-far which is 
a contradiction. 

In a similar way we can prove: 

COROLLARY 3.1. There exists a soft kinetic 1D-range tree 
for interval counting queries. The data structure is O( ~ + 

log z rt )-competitive and answers interval counting queries 
in time O(log rt) with absolute error e with high probability. 

3.2 2D-Range  Trees. In this section we describe and ana- 
lyze 2-dimensional soft kinetic range trees (see, e.g., [1] for 
a formal definition). 

We consider a standard implementation of  2D-range 
trees which can be regarded as a d0uble-level 1D-range tree: 
there is one 1D-range tree for the first level structure and rt 
1D-range trees (one for each node in the first level structure) 
for the second level structure (see, e.g., [1] for more details). 

Such a range tree is correct, if the nodes of  the first level 
tree are sorted from left to right in increasing order w.r.t, the 
x-coordinate of  the points and if the nodes of  the second level 
trees are sorted from left to right in increasing order w.r.t, y -  
coordinate of  the points. Thus here we have to maintain two 
sorted sequences. 

Similar to the binary search trees we want to have a data 
structure that supports range queries in a reasonable way. 
That is, we want to make sure that, if a structure is e-close to 
correct, it cannot happen that almost every range query fails. 

We say that a point is accessible in a 2D range tree, if it 
can be accessed in the first level tree using its x-coordinate 
as key and it can be accessed in all second level trees on 
the search path using its y-coordinate. A 2D range tree is 
e-far from correct, if there are at least err points that are not 
accessible. Similar to the binary search trees we can design a 
simple property tester. We sample a set o f  (.9( 1/e)  nodes and 
check whether they are accessible by following the parents 
pointers in the trees. We also use two arrays as auxiliary 
data structures. One of  them is used to define the order of  
objects in the first level of  the range tree and the other one 
defines the order in the second level. When the property 
tester rejects, it provides a proof that one of  these arrays is 
not in the correct order and we can find an adjacent pair that 
is in the wrong order. Then we swap these two objects in 
the corresponding array and we adjust the range tree to the 
changes we made. To be able to find the corresponding nodes 
in the range tree we maintain pointers to all occurrences of  a 
point in the second level trees. Then we can adjust the range 
tree in O( logr t )  time, if there is an error in the y-order of  
the points. I f  we swap two elements in the first level tree, we 
delete all occurrences in the second level tree. Then we swap 
the two nodes in the first level tree and reinsert the points into 
the second level trees. This can be done by using the position 
in the maintained array as a key. This procedure can be done 
in O(log 2 rt) time. 
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Checking whether a point is accessible takes O(log2rt) 
time. We again need that the test accepts a far input with 
probability O ( ~ r )  thus we need O(log 3 r t /c)  time for the 
test. 

We conclude: 

THEOREM 3.2. There is a soft kinetic version of  2D-range 
trees such that range queries are supported in O(log 2 rt + k) 
time, where k is the number of  reported points. The 2D- 

f f 3 f  l O _ ~ _ ~  X . . 

range tree is v t  e j-compettttve. Furthermore, if k* 
denotes the number of points in the query range then w.h.p. 
k >  k * - e r t .  

Proof. The analysis of the running time of the queries is 
similar to the 1D case. And again, if there is a query that 
returns less than k* - e rt points, then the structure must be 
e-far which is a contradiction. 

3.3 Euclidean Minimum Spanning Tree. In this section 
we design a soft kinetic data structure for Euclidean Mini- 
mum Spanning Tree (EMST). Let us first define a distance 
measure for the EMST (cf. also [8]): 

DEFINITION 3.1. An input graph is c-far from the EMST if 
the Hamming distance to the EMST is at least c ft. 

In [8], an (9(~/r t /e  • log 2 ( 1/e) • log rt)-time property 
tester for the EMST has been presented. (That is, the prop- 
erty tester takes as an input a point set P and an Euclidean 
graph G on P, and then it verifies whether G is not e-far 
from the EMST of P.) We briefly recall here this algorithm. 
A spot checker for the EMST first checks with two prop- 
erty testers whether the straight-line embedding of the input 
graph is crossing-free and whether its edges cross edges of 
the correct EMST for the given point set which is stored at 
the vertices of the input graph. If the input graph passes both 
tests, then the graph obtained by the edges of the input graph 
together with all edges of the correct EMST is almost planar. 
We can then explore (almost) planarity by showing that if the 
graph is e-far from the EMST then we will find a short cycle 
in the complete Euclidean graph whose longest edge belongs 
to the input graph. 

If we have a connected input graph that is e-far from 
the EMST at least one of the three tests described above will 
fail. Thus one can design the tester such that in any case 
it returns an edge of the input graph which does not belong 
to the EMST of the point set. We show below that this is 
sufficient to show the existence of an efficient soft kinetic 
EMST: 

THEOREM 3.3. There is a soft kinetic Euclidean mini- 
mum spanning tree that is (.9(kirtle • log2(1/e) • logrt)- 
competitive. 

Sketch of  the proof. We maintain a counter for the edges in 
our graph. Clearly, if an edge does not belong to the EMST, 
then it must be deleted and it is replaced by an edge that 
belongs to the EMST. Since the property tester for the EMST 
does only provide witnesses that an edge is not in the EMST 
we delete such an edge from the graph we maintain and we 
increase a counter. If  the number of deleted edges is greater 
than e r l /2 we recompute the EMST of the whole set - note 
that it is not possible to recompute the EMST without getting 
a bad approximation ratio, because some errors are detected 
with rather high probability. Then we run the property tester 
with parameter e '  = e/2.  We amortize the time needed 
to recompute the EMST and we get the desired competitive 
ratio. 
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