
www.manaraa.com

Soft Kinetic Data Structures

Artur Czumaj* and Christian Sohler t

Abstract
We introduce the framework of soft kinetic data structures (SKDS).
A soft kinetic data structure is an approximate data structure that
can be used to answer queries on a set of moving objects with
unpredictable motion. We analyze the quality of a soft kinetic
data structure by giving a competitive analysis with respect to the
dynamics of the system.

We illustrate our approach by presenting soft kinetic data
structures for maintaining classical data structures: sorted arrays,
balanced search trees, heaps, and range trees. We also describe
soft kinetic data structures for maintaining the Euclidean minimum
spanning trees.

1 Introduction.

The need of storing and processing continuously mov-
ing data arises in a broad variety of applications, including
weather forecast, geographic information systems, air-traffic
control, and telecommunications applications. The classical
dynamic data structures, which assume that the data changes
only at some explicitly given time steps, are not suitable
for processing continuously moving objects, because in or-
der to be of some value they must be continuously updated.
This is clearly an inefficient and infeasible solution consid-
ering the prohibitively large update overhead. An alterna-
tive approach, called kinetic data structures [6], has been re-
cently proposed in the context of computational geometry
(see also [21]). In kinetic data structures one assumes that
the motions of the objects are parameterizable by (pseudo-
)algebraic functions (typically linear, or low-degree polyno-
mial) of time, so that the positions of the objects change
without any explicit modification in the input data. (It is al-
lowed however, that the motion function can be modified, in
which case an "explicit" modification in the database is re-
ported.) A typical example for a kinetic data structure is to
maintain the closest pair of balls in a billiard simulation [5].
In such an application the closest pair of balls may change
at certain discrete points of time which are called (external)
events. Possible future events are stored in an event queue
and a kinetic data structure always processes the next event

Tl3~partment of Computer and Information Science, New Jersey In-
stitute of Technology, Newark, NJ 07102-1982, USA. Emaih c z u -
maj @cis. nj it. edu. WWW: www. cis. n3 it. edu/~czumaj. Re-
search supported in part by an SBR grant.

fHeinz Nixdorf Institute and Department of Mathematics & Computer
Science, University of Paderborn, D-33095 Paderborn, Germany. Email:
csohler@uni-paderborn, de. Research supported in part by DFG
Grant Me872/7-1 and by the IST Programme of the EU under contract
number IST-1999-14186 (ALCOM-FT).

in the event queue. It may be necessary to have additional
events that are needed to keep control of the system. These
events are called internal.

In recent years kinetic data structures have been applied
to many problems (see, e.g., [2, 5, 6, 21]). The previous
research has focused on the case when the objects motion
is described by some "simple" functions which are known
to the system. In many applications, however, the motion
of the objects is either completely unpredictable in time or
is unknown to the system (think, for example, on the car
motion in a traffic control systems). In such a case one
has to deal with the motion in the on-line fashion. Further,
because of the massive input data, it is typically infeasible
to process all data in the system (as it is, e.g., in real-
time systems) and therefore the only possible solution is
to provide approximate answers to the queries about the
system.

Of course, since we do not make any assumptions
about the motion changes, it is possible that the changes
in the system are so large that it is difficult to provide in a
reasonable time even an approximate information about the
system. Therefore we want to measure the quality of the
algorithms depending on the dynamics of the system: if the
system is very dynamic and very many changes has been
performed, the solutions will be slower; but if there are very
few modifications, then we aim at very quick solutions. To
measure this quantity we shall use the competitive analysis
of the algorithms: we shall measure how good the algorithms
are if we compare them to the algorithms which work in best
possible ways.

Unlike classical data structures, soft kinetic data struc-
tures provide only approximate answers with accuracy guar-
antees. In systems with low dynamics this allows us, how-
ever, order of magnitude faster responses over classical data
structures. Additionally, by providing answers with accu-
racy guarantees as fast as one wants them, one can continue
computations within an allotted time frame for increasingly
accurate answers.

1.1 Definition of Soft Kinetic Data Structures. In this
section we describe the framework of soft kinetic data struc-
tures. A soft kinetic data structure is an approximate data
structure that answers queries on a set of objects that move
in a totally unknown way. In our data structure each object
is referenced by an object identifier. Using the object iden-

865

www.manaraa.com

tifier we can query the current position of the corresponding
object. Queries to our data structures are typically access
or search queries. For example, when we use soft kinetic
sorted arrays we may query for the ith largest object in the
array, and a soft kinetic Euclidean minimum spanning tree
(EMST) supports the usual graph operations on the EMST.

Each time before a query to the data structure is pro-
cessed we run a procedure called the data structure reor-
ganizer. The data structure reorganizer checks whether the
current status of the data structure is almost correct. If it is
not, then the reorganizer will repair errors in the data struc-
ture until it is almost correct. Clearly, the amount of work
that has to be done by the reorganizer depends on the dy-
namics of the system. To be able to analyze the quality of
our data structures we compare the time we need to process
a sequence of queries with the dynamics of the system.

1.2 Capturing the Objects' Dynamics. In this section we
explain how we measure the dynamics of the objects. We are
given a system of moving objects. The dynamic behavior of
the system can be described as an unknown function of time
• that maps a point of time to a configuration of objects.
Let (Q) = Q1 , Qk be a sequence of chronological
queries to our data structure. We assume that a query Qt
is answered at a certain point of time which we denote by
T(Qt) . Our sequence of queries (Q} induces a sequence of
configurations of objects (C) = C1 Ck, where Ct =
O(T (Qt)) denotes the status of the system when query Qi is
processed. One can think of a system as being static, if most
pairs of consecutive configurations are "close" to each other
and it is dynamic, if most pairs are "far" from each other. In
the following we explain how we measure the dynamics in a
formal way. We assume the objects are moving continuously
from Ci to Ci+l using the "cheapest" possible motion. To
be able to say whether a motion is "cheap" we define the
cost of a motion in the spirit of kinetic data structures in the
following way:

DEFINITION 1.1. Let Ct and Ct+l be two configurations
of objects and let D be a correct data structure for config-
uration Ci. We assume that the objects are moving con-
tinuously from configuration Ct to C~+~. At certain dis-
crete points of time we have to change the data structure,
because some invariant does not hold any longer. Then the
cost c(Ci, C~+1) of a motion of objects from configuration
Ci to C~+1 is the minimum number (over all continuous mo-
tions) of these topological changes in D, if the objects are
moving continuously from configuration Ci to Ct+l and D
is always correct.

Note that, although we assume for the analysis that
objects are moving continuously, we do not necessarily have
to deal with continuously changing data.

The cost of a sequence of configurations is the cheapest
motion from the first configuration to the second, from the
second to the third and so on. Thus it is the sum of the
cost of the cheapest motion between each pair of consecutive
configurations.

DEFINITION 1.2. The cost c((C}) of a sequence of config-
urations (C) = C 1 , . . . , Ck is ~ i c(Ci, Ci+l).

Finally, the cost of a sequence of queries is the cost
of the induced sequence of configurations. Note that, in
some sense, the cost of a sequence of queries is a lower
bound on the work that has to be done to reorganize the data
structure before each query. We will therefore compare the
time needed to answer a sequence of queries with the cost of
the sequence as it has just been defined. This will be done in
form of a competitive ratio.

1.3 Notion of Approximation. As already mentioned, it is
impossible to use exact data structures in our model unless
we always query the position of all objects before each
query is processed. Similarly, it seems to be meaningless
to use a classical notion of approximation when we consider
problems like the Euclidean Minimum Spanning Tree. The
reason is that in such problems already a very small change
in the structure (e.g., inserting or deleting a single edge)
can change the total cost very significantly, and therefore
without looking at almost all edges we cannot guarantee any
reasonable good approximation. We therefore consider a
kind of combinatorial approximation as it was used before in
the context of property testing and spot checking (see, e.g.,
the survey work [19]). We define a function that measures
the error of a data structure and says that it the structure is
almost correct (c-close) if the error of the structure is less
than a given threshold. Both, the function and the threshold
depend on a parameter e. Typically, the error function
counts the edit-distance or Hamming distance to a correct
data structure and the threshold is c ft. If the error of the
data structure is larger than the threshold, then we say it is
c-far from correct.

The goal of soft kinetic data structures is to ensure
w.h.p., that each time before a query is processed the data
structure is almost correct.

For a given sequence of queries (Q) = Q 1 , . . . , Qk we
will aim at the running time of soft kinetic data structure to
be sublinear in k r t and close to c{/Q)). In the theoretical
model we are allowed to act each time, before a query is
passed to the structure.

DEFINITION 1.3. A soft kinetic data structure D is d-
competitive, if for any sequence of queries (Q} =
Q 1 , . . . , Qk the expected time (the sum over the whole se-
quence) needed to keep D close to correct is O(d . (c((Q)) +
k)).

866

www.manaraa.com

1.4 A Generic Reorganizer. In this section we describe
how we can guarantee that with high probability the data
structure is almost correct when we process a query. First
we need a procedure that tells us whether the data structure
is almost correct or not. This procedure is called a spot
checker or a property tester (see [10, 11, 12, 15, 20]). A spot
checker samples a small set of objects from our data structure
w.r.t, a (possibly non-uniform) probability distribution and
checks whether the current values of these objects do not
violate some invariant of the data structure. If they do, we
have found an error in the data structure which has to be
fixed. The choice of the sample must be in such that, if the
structure is e-far from correct, the data structure is rejected

2 with probability at least ~. The following algorithm achieves
with high probability that the structure is close to the correct
one after the algorithm has finished its correction. Assume
the structure is e-far from correct. Then the property tester
rejects and finds an error in the structure with probability at
least ~. Using standard amplification techniques we achieve

a confidence probability of ~0" We prove below that the
following algorithm guarantees w.h.p, that a data structure
is e-close to correct after the algorithm was called:

REORGANIZER(D)
if is_not_correct(D) then

Repair the error that has been found
REORGANIZER(D)
REORGANIZER(D)

THEOREM 1.1. Algorithms REORGANIZER() guarantees
with probability ~ that the data structure is e-close to cor-

rect, i f the property tester finds errors with probability ~o
when the data structure is e-far from correct.

Proof. Assume the data structure is e-far from correct. We
want to analyze the probability that REORGANIZER() stops
when the data structure is e-far from correct. This process
can be viewed as a binary tree. Each node corresponds
to a call of REORGANIZER() that rejects the current data
structure and it has a left (right) child if the first (second)
recursive call rejects the data structure. For example, if
the first call to REORGANIZER() accepts the input, then the
corresponding tree is the empty tree and it appears with
probability ~ . It is well known that the number of binary
trees with k nodes is less than 4 k. Let T be a tree with k
nodes. Then the probability that REORGANIZER() behaves
like the tree is (~0) k. (1.26) k+ 1 because each binary tree with
k nodes has k + 1 empty leafs. The overall probability that
the process stops before the structure is e-close to correct is
bounded from the above by ~ 0 < i.< oo 4i" (~0)t (1.26)t + 1 _< I"

REMARK 1.1. Note that in a real time system the reorga-
nizer may run as a background process. The approximation

parameter e may be automatically adjusted to the dynamics
of the system and the available resources.

1.5 An Example: Sorted Arrays. As an illustrative ex-
ample we consider soft kinetic sorted arrays. Let O be a set
of rt moving objects in IlL The object identifiers of O are
stored in an array A[1 .- . r~]. When we consider continuous
motion the topological structure of an exact array changes
when the values vl ,v2 of two objects change from vl < vz
to vl > v2. Under the assumption of continuous motion the
two corresponding object identifiers must be adjacent in the
array and will be swapped. Below we design a soft kinetic
version of this structure.

We have a sequence of queries Q = Q 1 , . . . , Qk to our
array and before proceeding each query we want to ensure
that our array is nearly sorted. To check whether the array
is close to a sorted array, we run the spot-checker from [10].
The array is rejected if it is e-far from sorted (the distance
measure used is edit distance). If the array is rejected the
spot checker from [10] returns a pair of indices (k, t) with
A[k] > A[t] and k < t.

OBSERVATION l. 1. The cost o f two consecutive queries
Q1,Q2 to a soft kinetic sorted array is the number of
swaps needed to transform a correctly sorted array A for
configuration ~(T(Q1)) to a correctly sorted array for
configuration ~(T(Q2)) . This is equal to the number of
inversion in the array A at time T(Q2).

From the pair of indices (k, t) returned by the property
tester we can compute a pair (k ' , k ' + 1) with A[k'] >
A[k ' + 1] by a binary search like procedure. As long as
k ~ 1. + 1 we compute rrt = [- - ~] and proceed either
with (k, rrt) or with (m, t) depending on the value of A[m].
Finally, we swap A[k'] and A[k' + 1]. Below we state the
algorithm for the soft kinetic sorted array that is called before
a query is answered:

SKARRAY(A)
if SORTEDTESTO= FALSE then

Let (k, t) be the pair returned by SORTEDTEST0
k'=FINDINVERSION(k, t)
swap(A[k'], A[k' + 1])
SKArray(A)
SKArray(A)

THEOREM 1.2. There is a soft kinetic sorted array that is
0 (~)-competitive.

Proof. We have to prove that the distance from a correct
structure in the 'property testing distance' is monotone de-
creasing and that the distance in terms of events is decreas-
ing by 1 each time an error is fixed.

867

www.manaraa.com

It is obvious that the edit distance to a correctly sorted array
cannot increase when we correct an inversion. Thus we will
now consider the distance in terms of events and the running
time. A single call to the reorganizer takes time O(~ -~ • k)
where k is the number of corrected errors. Any error cor-
rection reduces the distance to a correctly sorted array by 1.
By the triangle inequality it follows that the overall time to
process a sequence (Q) of queries is at most c((Q)) • lo~a

C "

2 Basic Data Structures.

In this section we present soft kinetic versions of some
classical data structures.

2.1 Balanced Search Trees. We begin our discussion with
soft kinetic search trees.

A (balanced) binary search tree is a rooted tree in
which each node z stores a key KEY(Z) (wlog. we assume
this is a real number) and which satisfies the following
property: For any node x in the tree and any node y
in the left (right, respectively) subtree of x, it holds that
KEY(X) > KEY(1j)(KEY(x) < KEY(b), respectively)•
In the case of soft kinetic search trees each node z stores
an object identifier which itself contains the key. This
key may change in an unpredictable way as a function of
time. We first suppose that only the standard access (or
search/membership) operation is to be implemented•

We observe that a binary search tree is correct, if the
keys are in increasing order from the leftmost node to the
rightmost one in the in-order tree traversal. Therefore our
goal is similar to that in sorted arrays: we want to maintain
a sorted sequence of keys. We consider also the same events
as in sorting, namely, an even occur when two keys change
their relative order• We observe also that it does not seem to
be a good idea to measure the quality of the search tree by
its edit distance to a correct search tree. This is because the
most important tree operation is the access operation• There
are search trees whose edit distance to a correct tree is very
small but almost no access operation will work correctly.
Consider for example a balanced search tree and exchange
the root with the smallest element of the tree. then roughly
half of the access operations will fail, but the edit distance to
a correct tree is only constant. We therefore shall use another,
more sensitive definition.

DEFINITION 2.1. A search tree is e-far from correct, if at
least e r t access operations fail.

The next thing we need is a property tester for the
invariant of the search tree. But this is simple for balanced
search trees with the distance measure from above. We
assume that the nodes of the search tree are stored in an
array and we may sample (in constant time) nodes from this
array. The following is a spot checker for the above distance
measure: sample a set o f O (1 / e) nodes and check whether

they are accessible by following pointers to their parent
towards the root. At each node we verify the correctness
of the search path. Let ~T denote the linear order induced
by the tree. If the search path is incorrect, then we find two
nodes vl ,v2 such that vl ~T v2 andvl > v2.

Then we proceed similar to the sorted arrays. We use
a binary search on the tree nodes to find 2 adjacent nodes
× ,y w i t h x ~ r ~ a n d x < ~j. In order to perform this
operation in a binary tree efficiently we maintain the size
of each subtree. Then we swap x and y. Unfortunately,
swapping two adjacent elements may increase the distance to
a correct data structure in terms of property testing. Thus the
analysis of the generic reorganizer does not hold any longer.
Therefore, we use standard amplification techniques to put
the confidence that the tester from above accepts an input that
is far from correct to O(l / r t 2). A single call to the tester will
then require O(log 2 r~/e) time. We need O(logr t) time to
perform the access operations and we have to repeat the test
O(log rt) times to ensure the high confidence probability we
need. The time for the binary search is O(log 2 r~). This leads
to the following theorem.

THEOREM 2.1. There is a soft kinetic balanced search tree

that ts ~ t e)-competltwe.

Now we consider two dynamic operations on trees:
insert and delete. We focus here on binary search trees
whose updates are based on rotations (this includes, for
example, AVL-trees). Thus in order to implement insert and
delete operations we have to implement rotations.

We call two elements x and y corrupted i f x ~T Y and
x > y, or y ~T x and y > x. We prove that rotations do
not increase the overall error, if the two top elements of the
rotation are not corrupted (the two top elements are x and y
in Figure 1).

LEMMA 2.1. Rotations do not change the number o f errors
in the structure unless the order o f the two top elements is
corrupted•

Y x

A B B C

Figure 1: Illustration to the proof of Lemma 2.1.

868

www.manaraa.com

Proof We consider a rotation from the left tree to the right
one (cf. Figure 1). The other rotation is similar. Let i be an
item that can be accessed. If i. is in subtree A, then i. < ×
and i < y holds because i is accessible. Thus, it can also
be accessed after the rotation. The same holds for items in
subtree B. If an accessible item i is in subtree C we know
that i > y. Since the two top elements (x and !J) are not
corrupted, it holds that x < y; hence i < x < y and the item
can be accessed after the rotation.

Now let us consider the situation when the top elements
are corrupted. We keep a reference to these two elements and
continue with rotations. After we finished the insert~delete
operation, we repair the corrupted elements in a similar way
as we did above and then we call the reorganizer. We can
amortize the time needed for this call to the reorganizer to the
errors we just corrected. This leads to the following theorem:

THEOREM 2.2. There is a soft kinetic search tree that is
I o ~ . . O(c)-compettttve and that supports insert and delete

operations in O(logn) time.

REMARK 2.1. Let us notice in this place that an inser-
tion/deletion may increase the distance (in events) to a cor-
rect structure by O{n).

REMARK 2.2. Notice that the structure of the search tree
does not change during the reorganization process, i.e., a
balanced search tree will remain balanced.

2.2 Binary Heaps. Below we develop a soft kinetic binary
heap. Let us recall that a binary heap is a data structure
which stores r~ elements (wlog. we assume these elements
have assigned real-valued keys) in an array and which sat-
isfies the heap property: for every i, 1 < i < rt, it holds
that KEY(Li/2]) < KEY(i). We shall also use an implicit
tree representation of the heap and for each ith element in
the array the element [i/2J will be called p arent[i].

2.2.1 Property Tester. In this subsection we develop a
property tester for binary heaps. When shall use the follow-
ing distance measure (notice here a similarity of this defini-
tion with the definition of soft heap due to Chazelle [7] - our
notion is however significantly weaker):

DEFINITION 2.2. A binary heap H is e-far from correct, if
at least e n keys must be changed to satisfy the heap property
in H.

Our property tester works in the following way: We first
sample at random a set S of elements in the heap. Then we
look at the first log(] /e) ancestors of each element chosen.
By the heap property, so defined ISI chains must be non-
increasing. If one of the chains is not non-increasing, we
reject the input heap.

TESTHEAP(H, e)
Sample set S of O (1 / e) heap elements at random
for each element i. 6 S do

fori =] to O(log(l /e)) do
if KEY(i) < KEY(parertt[i])then reject
i = parertt[i]

accept

To prove the correctness of our algorithm, we will show
that there are O(ert) distinct pairs of heap elements that

• violate the heap property,

• one element of the pair is ancestor of the other one, and

• the distance between the two elements in the heap is at
most O(log ~).

We call such a pair a violating pair. For the analysis
we introduce a new value btar tk for the keys. If an element
in the heap is assigned the value btar tk it may be set to any
value we like, thus for any key x btar tk < × and btartk > x
are both true. It follows immediately from the definition that
if a heap is e-far from correct, we have to set at least err
elements to the value btar tk to fullfill the heap property.

We say that a vertex is low in H, if its depth is at least
log{ca) - 4. Let us now assume that heap H is c-far from
correct. We show that there are O(erQ violating pairs. In
a first step we set all err/16 keys of elements that are not
low to btartk. If no pair (×,y) of elements remains s.t. ×
is ancestor of g and (×,y) violates the heap property, we
are close to a correct heap which is a contradiction. Thus
there exists such a pair. Also note that both × and g must
be low in the heap. Thus the distance between them is at
most O(log ¼) and we conclude that (×, y) is a violating pair.
Then we set × and y to btar tk and apply our argument again.

15 O(crt) violating pairs. This way we can construct ert~-~ =
when we sample the lower element of the violating pair, then
our algorithm will find a conflict in the heap. Thus it is
sufficient to sample O(¼) elements. We have just proven:

THEOREM 2.3. Algorithm TESTHEAP0 is a proper~ tester
for the heap property of binary heaps. Its running time is
O (1 / e . Iog(l/e)).

2.2.2 Analyzing the Competitive Ratio. Unlike in the
case of total orders there are many different partial orders
that satisfy the heap property. This leads to the question
how we compare our data structure to a correct sequence of
data structures. One way to deal with this problem would
be to require to make the heap competitive to any correct
sequence of heaps. But this seems to much to ask for. We
therefore only require that the amount of work we do must be
comparable to the minimum number of events to transform
the current heap into a correct one.

869

www.manaraa.com

Similarly to the sorted array, we analyze the competi-
tiveness of binary heaps with respect to swaps of two adja-
cent elements. In this case we may swap an item ct with its
parent in the heap. Unfortunately, in binary heaps it is not
clear whether swapping two conflicting adjacent items does
reduce the overall error of the structure.

We concentrate on reducing the error count only among
the low vertices in the heap. If we find a pair of low vertices
that violates the heap property we recompute the largest
sub-heap that contains only low vertices and the conflicting
pair. This sub-heap has size O (I / e) . I f we find another
conflicting pair, we do nothing. This way we need O (1 / e)
time to reduce the minimal distance to a correct heap by 1.

THEOREM 2.4. There is a soft kinetic binary heap that is
(_9 (1 / e . log(1 /e))-competitive.

3 Geometric Data Structures.

In the previous section we have focused our attention on
standard elementary data structures. Now we shall consider
some soft kinetic data structures from computational geom-
etry.

3.1 1D-Range Trees. We can use soft kinetic data struc-
tures for binary search trees to obtain the following result
(see [1] for a formal definition of range trees):

THEOREM 3.1. There is a soft kinetic version of lD-range
trees such that range queries are supported in O(logr t + k)
time, where k is the number of reported points. The 1D-

range tree is ~ t e }-competittve. Further, if k* denotes
the number of points in the query range then it holds whp.
that k > k * - e r t .

Proof. We have to show that k > k* - e r t holds with
probability 2 /3 and we have to prove the running time for
the range queries. The other results follow from the binary
search trees. First of all, we can assume that the data
structure is e-close to correct when the query is processed.
This is because before the query the reorganizer is called. A
range query for a one dimensional range tree is answered in
the following standard way: we search for the right and the
left end of the query interval and output all nodes that are
between the search paths. Before we report a point we check
if it is really inside the query interval. If it is, we output
it. If it is not we have found an inversion with some node
on the search paths. We can correct this inversion and call
the reorganizer. The time for this call as well as the time to
process the point is amortized to the corrected error.

Now assume that less than k* - e r t points are reported.
Then there are err nodes that cannot be accessed, because
any access operation to one of the missing nodes with end
either on the search paths or between them. But these are the

reported nodes. Thus we have that the tree is e-far which is
a contradiction.

In a similar way we can prove:

COROLLARY 3.1. There exists a soft kinetic 1D-range tree
for interval counting queries. The data structure is O(~ +

log z rt)-competitive and answers interval counting queries
in time O(log rt) with absolute error e with high probability.

3.2 2D-Range Trees. In this section we describe and ana-
lyze 2-dimensional soft kinetic range trees (see, e.g., [1] for
a formal definition).

We consider a standard implementation of 2D-range
trees which can be regarded as a d0uble-level 1D-range tree:
there is one 1D-range tree for the first level structure and rt
1D-range trees (one for each node in the first level structure)
for the second level structure (see, e.g., [1] for more details).

Such a range tree is correct, if the nodes of the first level
tree are sorted from left to right in increasing order w.r.t, the
x-coordinate of the points and if the nodes of the second level
trees are sorted from left to right in increasing order w.r.t, y -
coordinate of the points. Thus here we have to maintain two
sorted sequences.

Similar to the binary search trees we want to have a data
structure that supports range queries in a reasonable way.
That is, we want to make sure that, if a structure is e-close to
correct, it cannot happen that almost every range query fails.

We say that a point is accessible in a 2D range tree, if it
can be accessed in the first level tree using its x-coordinate
as key and it can be accessed in all second level trees on
the search path using its y-coordinate. A 2D range tree is
e-far from correct, if there are at least err points that are not
accessible. Similar to the binary search trees we can design a
simple property tester. We sample a set o f (.9(1/e) nodes and
check whether they are accessible by following the parents
pointers in the trees. We also use two arrays as auxiliary
data structures. One of them is used to define the order of
objects in the first level of the range tree and the other one
defines the order in the second level. When the property
tester rejects, it provides a proof that one of these arrays is
not in the correct order and we can find an adjacent pair that
is in the wrong order. Then we swap these two objects in
the corresponding array and we adjust the range tree to the
changes we made. To be able to find the corresponding nodes
in the range tree we maintain pointers to all occurrences of a
point in the second level trees. Then we can adjust the range
tree in O(logr t) time, if there is an error in the y-order of
the points. I f we swap two elements in the first level tree, we
delete all occurrences in the second level tree. Then we swap
the two nodes in the first level tree and reinsert the points into
the second level trees. This can be done by using the position
in the maintained array as a key. This procedure can be done
in O(log 2 rt) time.

870

www.manaraa.com

Checking whether a point is accessible takes O(log2rt)
time. We again need that the test accepts a far input with
probability O (~ r) thus we need O(log 3 r t /c) time for the
test.

We conclude:

THEOREM 3.2. There is a soft kinetic version of 2D-range
trees such that range queries are supported in O(log 2 rt + k)
time, where k is the number of reported points. The 2D-

f f 3 f l O _ ~ _ ~ X . .

range tree is v t e j-compettttve. Furthermore, if k*
denotes the number of points in the query range then w.h.p.
k > k * - e r t .

Proof. The analysis of the running time of the queries is
similar to the 1D case. And again, if there is a query that
returns less than k* - e rt points, then the structure must be
e-far which is a contradiction.

3.3 Euclidean Minimum Spanning Tree. In this section
we design a soft kinetic data structure for Euclidean Mini-
mum Spanning Tree (EMST). Let us first define a distance
measure for the EMST (cf. also [8]):

DEFINITION 3.1. An input graph is c-far from the EMST if
the Hamming distance to the EMST is at least c ft.

In [8], an (9(~/r t /e • log 2 (1/e) • log rt)-time property
tester for the EMST has been presented. (That is, the prop-
erty tester takes as an input a point set P and an Euclidean
graph G on P, and then it verifies whether G is not e-far
from the EMST of P.) We briefly recall here this algorithm.
A spot checker for the EMST first checks with two prop-
erty testers whether the straight-line embedding of the input
graph is crossing-free and whether its edges cross edges of
the correct EMST for the given point set which is stored at
the vertices of the input graph. If the input graph passes both
tests, then the graph obtained by the edges of the input graph
together with all edges of the correct EMST is almost planar.
We can then explore (almost) planarity by showing that if the
graph is e-far from the EMST then we will find a short cycle
in the complete Euclidean graph whose longest edge belongs
to the input graph.

If we have a connected input graph that is e-far from
the EMST at least one of the three tests described above will
fail. Thus one can design the tester such that in any case
it returns an edge of the input graph which does not belong
to the EMST of the point set. We show below that this is
sufficient to show the existence of an efficient soft kinetic
EMST:

THEOREM 3.3. There is a soft kinetic Euclidean mini-
mum spanning tree that is (.9(kirtle • log2(1/e) • logrt)-
competitive.

Sketch of the proof. We maintain a counter for the edges in
our graph. Clearly, if an edge does not belong to the EMST,
then it must be deleted and it is replaced by an edge that
belongs to the EMST. Since the property tester for the EMST
does only provide witnesses that an edge is not in the EMST
we delete such an edge from the graph we maintain and we
increase a counter. If the number of deleted edges is greater
than e r l /2 we recompute the EMST of the whole set - note
that it is not possible to recompute the EMST without getting
a bad approximation ratio, because some errors are detected
with rather high probability. Then we run the property tester
with parameter e ' = e/2. We amortize the time needed
to recompute the EMST and we get the desired competitive
ratio.

References

[1] E K. Agarwal. Range searching. In Handbook of Dis-
crete and Computational Geometry, J. E. Goodman and
J. O'Rourke, eds., CRC Press, Boca Raton, FL, 1997.

[2] E K. Agarwal, D. Eppstein, L. J. Guibas, and M. R. Hen-
zinger. Parametric and kinetic minimum spanning trees. In
Proc. 39th FOCS, pp. 596--605, 1998.

[3] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Effi-
cient testing of large graphs. In Proc. 40th FOCS, pp. 656-
666, 1999.

[4] N. Alon, S. Dar, M. Parnas, and D. Ron. Testing of clustering.
In Proc. 41st FOCS, 2000.

[5] J. Basch, L. J. Guibas, and Li Zhang. Proximity problems on
moving points. In Proc. 13th SoCG, pp. 344--351, 1997.

[6] J. Basch, L. J. Guibas, and J. Hershberger. Data structures for
mobile data. J. Algorithms, 31(1):1-28, 1999. A preliminary
version appeared in Proc. 8th SODA, pp. 747-756, 1997.

[7] B. Chazelle. The Soft Heap: An approximate priority queue
with optimal error rate. J. Assoc. Comput. Mach., to appear,
2000. A preliminary version appeared in Proc. 6th ESA, pp.
35-.-42, 1998.

[8] A. Czumaj, C. Sohler, and M. Ziegler. Property testing in
computation geometry. In Proc. 8th ESA, pp. 155-166, 2000.

[9] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay.
Clustering in large graphs and matrices. In Proc. lOth SODA,
pp. 291-299, 1999.

[10] E Ergiin, S. Kannan, S. Ravi Kumar, R. Rubinfeld, and
M. Viswanathan. Spot-checkers. J. Compur System
Sci., 60:717-751, 2000. A preliminary version appeared in
Proc. 30th STOC, pp. 259-268, 1998.

[11] A. Frieze and R. Kannan. Quick approximation to matrices
and applications. Combinatorica, 19:175-220, 1999.

[12] A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo al-
gorithms for finding low-rank approximations. In Proc. 39th
FOCS, pp. 370--378, 1998.

[13] E Ergiin, S. Ravi Kumar, and R. Rubinfeld. Approxi-
mate checking of polynomials and functional equations. In
Proc. 37th FOCS, pp. 592.--601, 1996.

[14] O. Goldreich, S. Goldwasser, E. Lehman, and D. Ron. Test-
ing monotonicity. In Proc. 39th FOCS, pp. 426--435, 1998.

871

www.manaraa.com

[15] O. Goldreich, S. Goldwasser, and D. Ron. Property testing
and its connection to learning and approximation. J. Assoc.
Comput. Mach., 45(4):653-750, 1998. A preliminary version
appeared in Proc. 37th FOCS, pp. 339-348, 1996.

[16] O. Goidreich and D. Ron. Property testing in bounded degree
graphs. In Proc. 29th STOC, pp. 406--.415, 1997.

[17] O. Goldreich and D. Ron. A sublinear bipartiteness tester
for bounded degree graphs. Combinatorica, 19(3):335-373,
1999. A' preliminary version appeared in Proc. 30th STOC,
pp. 289-298, 1998.

[18] M. Parnas and D. Ron. Testing the diameter of graphs. In
Proc. RANDOM-APPROX'99, pp. 85-96, LNCS 1671, 1999.

[19] D. Ron. Property testing. In Handobook of Randomized
Algorithms. Kluwer Academic Publishers, 2000. To appear.

[20] R. Rubinfeld and M. Sudan. Robust characterization of
polynomials with applications to program testing. SIAM
J. Comput., 25(2):252-271, 1996.

[21] B. Salzberg and V. J. Tsotras. Comparison of access methods
for time-evolving data. ACM Computing Surveys, 31(2): 158-
221, 1999.

872

